C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name : Introduction to Quantum Mechanics

Subject Code : 4SC06QMC1		Branch: B.Sc. (Physics)		
Semes	ter : 6 Date : 23/04/2018	Time : 02:30 To 05:30 Marks : 70		
Instruc	tions:			
(1)	Use of Programmable calculator	& any other electronic instrument is prohibited	1.	
(2)	Instructions written on main answer book are strictly to be obeyed.			
(3)	Draw neat diagrams and figures	(if necessary) at right places.		
(4)	Assume suitable data if needed.			
Q-1	Attempt the following ques	stions:	(14)	
a)	Which kind of energy is pos	sessed by the free particle?	01	
b)	Define a Wave packet.		01	
c)	What is Heisenberg's uncert	ainty principle? Write its equation.	01	
d)	What do you mean by the non norm?	ormalization of a wave function ψ with finite	01	
e)	What are the Admissibility (Conditions of a wave function?	01	
f)	Define the Stationary States.		01	
g)	What is a momentum Eigen	function? How can it be normalized?	01	
h)	Write the formula for the ref walls.	lection probability \mathfrak{R} at potential barrier and	01	
i)	Define the adjoint of an oper	cator.	01	
j)	What is self adjoint operator	?	01	
k)	What are the properties of a	self adjoint operator?	01	
l)	What is the Dirac Delta func	tion?	01	
m)	Fill in the blanks from Ehre	nfest theorem: $m \frac{dr}{dt} = _$ and $\frac{\langle dP_r \rangle}{dt} = _$	01	
n)	Write the formula for the endoscillator.	ergy eigen values of the simple harmonic	01	

Attempt any four questions from Question No. 2 to Question No. 8

Q-2		Attempt all questions	(14)
	Α	Obtain Schrödinger's equation for free particle in one dimension. From	06
		that, obtain it for three dimensions.	
	В	Obtain Schrödinger's equation for a particle in a force field.	04
	С	Derive : Time dependent Schrödinger Equation.	04

Q-3	A B	Attempt all questions Discuss about the Physical interpretation for a wave function Ψ (r, t) and probability interpretation for finding a particle in three dimensional space. Write a short note on the Normalization of a wave function ψ .		
	С	Normalize the given wave functions. $\Psi = a. \exp i(kx - wt)$ where $-2 \le x \le 2$	03	
		$\chi = \exp(-i\theta)$ where $0 < \theta < 2\pi$		
		$\Psi'(\phi) = A\sin(mn\phi)$ where $0 < \phi < 2\pi$		
Q-4	A	Attempt all questions Explain giving example: Normalization of wave function with infinite norm by the method of Box Normalization	(14) 07	
	В	Explain the conservation of probability for normalizable wave functions.	07	
Q-5	A	 Attempt all questions Write a short note on Expectation Value derive necessary formulas for the expectation value of (i) Energy (ii) Potential Energy and (iii) Momentum. 		
	В	Derive : Time Independent Schrödinger Equation.		
Q-6	A trempt all questions A Give a brief explanation of Eigen Function and its Eigen Values. Show that the wave functions $\psi(x) = \sin 2x$ and $\phi(z) = e^{3x}$ are eigen function of $\frac{\partial^2}{\partial x^2}$.			
	В	Describe the Square-Well Potential with one dimensional Schrödinger equation for different regions	03	
	С	Discuss the particle under bound state ($\vec{E} < 0$) in a square well and derive its solutions.	06	
Q-7	A	Attempt all questions Give a detailed account for Energy Eigen Function for Even & Odd	(14) 08	
	В	Write the statements of three fundamental postulates for the particle waves in quantum mechanics. Discuss any one of them.	06	
Q-8	A	Attempt all questions For a given wave function $\psi = (\pi a^3)^{-1/2} \cdot e^{-r/a}$ in spherical polar coordinate system (r, θ, ϕ), prove that $< r > = \frac{3a}{a}$; where $a = \text{constant}$.		
	B For a wave function $\psi = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$, prove that the expectation val			
	С	of <i>x</i> for a particle in a box with volume L^3 is $\langle x \rangle = \frac{L}{2}$. Prove that : $[x, P_x^n] = n i \hbar P_x^{n-1}$ $[L_x, L_y] = i \hbar L_z$	04	
		$[\mathbf{y}, \mathbf{P}_{\mathbf{y}}^{n}] = \mathbf{n} \mathbf{i} \mathbf{h} \mathbf{P}_{\mathbf{y}}^{n-1} \qquad [\mathbf{L}_{\mathbf{y}}, \mathbf{L}_{\mathbf{z}}] = \mathbf{i} \mathbf{h} \mathbf{L}_{\mathbf{x}}$		
	D	$\begin{bmatrix} z & P_z^n \end{bmatrix} = n \ i \ h \ P_z^{n-1} \qquad \begin{bmatrix} L_z, L_x \end{bmatrix} = i \ h \ L_y$ Prove that the commutator of the position and momentum do not vanishes for a particle; as $[x , P_x] = \begin{bmatrix} y, P_y \end{bmatrix} = \begin{bmatrix} z & P_z \end{bmatrix} = i \ h$	02	

